

SECTORAL GUIDELINE ON PRODUCT CARBON FOOTPRINT PROCESS

SOLAR PV MANUFACTURING

USAID RFP INVEST I I 7 - RESEARCH AND ADVISORY SUPPORT TO STRENGTHEN THE INSTITUTIONAL INFRASTRUCTURE FOR CARBON LABELING IN VIETNAM

June 2024

DISCLAIMER

This document is made possible by the support of the American people through the United States Agency for International (USAID). The contents of this document are the sole responsibility of RCEE-NIRAS and do not necessarily reflect the views of USAID or the United States Government.

CONTENTS

CONTENTS	2				
ABBREVIATIONS	3				
LIST OF PICTURES	4				
LIST OF TABLES	4				
DEFINITIONS	5				
1. INTRODUCTION	7				
2. GETTING STARTED	8				
3. PROCESS GUIDANCE	9				
NNEX 1 - PRACTICAL SKILLS 27					

ABBREVIATIONS

AD	Activity data
BOD	Biogenic Oxygen Demand
CFC	Chlorofluorocarbon
CH4	Methane
COD	Chemistry Oxygen demand
EF	Emission factor
GLO	Global
HCFC	Hydrochlorofluorocarbons
HFC	Hydrofluorocarbons
IPCC	Intergovemental Panel on Climate Change
PCF	Product Carbon footprint
RfC	Request for Certification
ROW	Rest of the World

LIST OF PICTURES

FIGURE I: SOLAR PV PRODUCTS WORKSHEET	13
FIGURE 2: EXAMPLE PROCESS MAP IDENTIFIED BY COMPANY X, PRODUCING SOLAR PV PANEL	16
FIGURE 3: SUMMARY OF A PRODUCT CARBON FOOTPRINT CALCULATION	20

LIST OF TABLES

Table I: Terms and definitions	7
Table 2: Example activities resulting in GHG emissions during transportation and retail of solar PV	′s I 8
Table 3: Example assumptions for estimating GHG emissions during downstream phases of solar PVs	19
Table 4: Activity data and EF combinations for standard activities across the lifecycle	21
Table 5: Reference sources for emission factors	23
TABLE 6: CELL COLOR DEFINITIONS	26

DEFINITIONS

	Table 1: Terms and definitions			
Term	Definition			
Activity data	A quantitative measure of a level of activity that results in GHG emissions.			
Allocation Emission Co- Products (AEC)	This method refers to the process of allocating the environmental impact to other products that are associated with the production of the main product of interest.			
Avoided carbon / Avoided GHG emissions	Avoided emissions are emission reductions that occur outside of a product's life cycle or value chain, but because of the use of that product. Examples of products that avoid emissions include low- temperature detergents, fuel-saving tires, energy-efficient ball bearings, and teleconferencing services.			
Biogenic carbon / Carbon dioxide	Biogenic carbon is the carbon stored in biological materials. Biogenic carbon dioxide (CO_2) is emitted from (non-fossil fuel) biological processes, such as combustion of biogas.			
Carbon dioxide equivalent (CO2e)	Unit for comparing the radiative forcing of a greenhouse gas (GHG) to that of carbon dioxide (CO $_2$).			
Co-product	Any of two or more products resulting from the same process or product system which cannot be produced without the other being produced, and which have a market value.			
Data quality indicator (DQI)	An assigned indicator of the data quality of each activity data and each Emissions factor.			
Global warming potential (GWP)	Factor used to describe the radiative forcing of a greenhouse gas relative to that of CO_2 .			
Greenhouse gas (GHG)	Gaseous constituent of the atmosphere, both natural and anthropogenic, that absorbs and emits radiation at specific wavelengths within the spectrum of infrared radiation emitted by the earth's surface, the atmosphere, and clouds.			
Input allocation	Allocation of inputs (including materials, energy, etc.) to a product level.			
Output allocation	Allocation of outputs to a product level, e.g., between co-products.			
Primary data	Quantified value of a process or an activity obtained from a direct measurement, or a calculation based on direct measurements at its original source.			
Product	A good or a service.			
Product consistency criteria (PCC)	Set of specific requirements and guidelines for quantification of and communication on the carbon footprint for one or more product categories. This is also referred to as a 'Product Environmental			

Table I: Terms and definitions

	Footprint Category Rule' under the EU's Product Environmental Footprint legislation ¹ .
Product carbon footprint (PCF)	The sum of greenhouse gas emissions and removals related to a product.
Recycling allocation	Allocation of the benefits of recycling between products using recycled materials and products that are recycled to provide those materials.
Secondary data	Quantified value of a process or an activity obtained from sources other than a direct measurement, or a calculation based on direct measurements at its original source.
Stock keeping unit (SKU)	A distinct sales unit consisting of relevant characteristics of a product (e.g., product type, material, size, packaging, etc.).

¹ In December 2021, EU adopted a recommendation on the use of product environmental footprint category ruel as part of the environmental footprint calculations. More information on this rule can be found here - Environmental Footprint methods - European Commission (europa.eu).

I. INTRODUCTION

This document provides instructions for how to develop a carbon footprint for products within the solar PV manufacturing sector. It is designed to provide step-by-step instructions for Vietnamese organizations that wish to estimate the greenhouse gas (GHG) emissions of a product's value chain, including the production of input materials, manufacture of the product itself, use and transportation of the product, and end-of-life disposal.

The document must be used along with the following product carbon footprint (PCF) calculation tool and PCF technical guidance:

- **PCF Data Collection and Calculation Toolkit**² Organizations can use the toolkit to calculate carbon footprints for products in solar PV manufacturing and other carbon-intensive sectors. Using the tool helps standardize the PCF process and reduce the cost and complexity of carbon footprinting. The Toolkit can be accessed here: http://rcee.org.vn/en/document.
- Technical Guidance for Vietnamese Industries on How to Conduct a Product Carbon Footprint (PCF). The guidance provides a general framework and instructions for how to collect the appropriate data and calculate a product carbon footprint using internationally recognized GHG accounting standards. The guidance is designed to be sector-agnostic and provide a high-level understanding of terminology, methods, resources, and processes for preparing a PCF. The document can be accessed here http://rcee.org.vn/en/document.

The guidance was commissioned by USAID through the USAID INVEST project and was prepared by a consortium of RCEE-NIRAS and the Carbon Trust. The PCF guidance is part of a compilation of surveys, analytical reports, and other technical documents funded by USAID INVEST to support the Government of Vietnam understand the drivers, methods, and available data for conducting PCF in carbon-intensive and export-oriented industries.

What is a product carbon footprint?

Product carbon footprinting involves the quantification of GHG emissions across the life cycle of a product, which may include production and transportation of material inputs, energy consumption, product use and transport, and disposal or recycling at end-of-life. The specifics of what is included in a product carbon footprint depends on the individual product and its value chain.

By calculating and understanding a product carbon footprint, a company is able to:

- Identify opportunities to improve the GHG emissions performance of their products and systems;
- Inform strategic planning, priority setting, design or re-design of products;
- Improve marketing through participation in carbon labelling schemes or low-carbon product declarations.

The information in this document aligns with internationally recognized PCF protocols, such as the Greenhouse Gas Protocol³, PAS 2050⁴ and ISO 14067⁵.

² INVEST 117 – Product Carbon Footprint (PCF) Data Collection and Calculation Toolkit: Electronics Manufacturing, Iron and Steel, Garment and Textiles, and Solar Photovoltaics. June 2024: http://www.rcee.org.vn/en/insights

³https://ghgprotocol.org/sites/default/files/standards/Corporate-Value-Chain-Accounting-Reporing-Standard_041613_2.pdf ⁴https://knowledge.bsigroup.com/products/specification-for-the-assessment-of-the-life-cycle-greenhouse-gas-emissions-ofgoods-and-services?version=standard

⁵ <u>https://www.iso.org/standard/71206.html</u>

2. GETTING STARTED

Setting up

Proper documentation is fundamental for a successful product carbon footprint. It enables efficient communication between stakeholders and provides a basis for monitoring, evaluation, and updating over time.

The organization developing the PCF should create a data repository for the PCF and ensure that primary activity data is clearly documented, well maintained, and properly saved to act as a clear reference point. Having a data system in place allows for a verifier (internal or external) to cross-check activity data, assumptions, and methods used.

Defining the objective

At the beginning of the PCF, the organization should form a PCF task force and outline the specific objectives and goals for the PCF. This may include, but is not limited to:

- Testing scenarios to explore how altering a product might affect its environmental footprint
- Making comparative assertions between products
- Designing a user dashboard optimized for managing PCF-related objectives
- Achieving certification of the PCF
- Reporting on a corporate scope I, scope 2 and scope 3 GHG emissions inventory and GHG reduction commitments
- Reviewing key physical, reputational, financial and policy risks of the measured product
- Measuring the circular economy of products footprinted
- Reporting against a science-based or other GHG target

3. PROCESS GUIDANCE

This section briefly describes the steps an organization should take to define the system boundary of the project and calculate GHG emissions from its value chain. For more detail on each step, please refer to the **Technical Guidance for Vietnamese Industries on How to Conduct a Product Carbon Footprint (PCF)**

To assess greenhouse gas emissions associated with products or services, organizations follow a structured approach. Initially, they define the specific products or services to be evaluated and establish clear boundaries for the assessment, determining which stages of the product lifecycle will be included, such as from production to disposal. Next, a detailed process flow diagram is created, mapping out all stages and subprocesses involved in production or service delivery, while capturing inputs, outputs, co-products, and waste streams at each stage. Data collection follows, where quantities, types, and sources of inputs and outputs are meticulously gathered to ensure accuracy and completeness. Using this data, organizations then calculate greenhouse gas emissions using appropriate methodologies and emission factors, aggregating these emissions across all lifecycle stages to determine the overall product footprint. Throughout these steps, adherence to recognized standards and guidelines ensures consistency and reliability in the assessment process.

Step I – Identifying the product system and its system boundary

As described in more detail in Section 2.1 of the **Technical Guidance for Vietnamese Industries on How** to **Conduct a Product Carbon Footprint (PCF)**, organizations must clearly define the product and its system boundary by answering the following questions:

- Geographical area of sale/use.
- Which stock-keeping units (SKUs) and geographical areas of sale/use that fall under the definition of this
 product.
- The unit of analysis (Functional Unit) of the product footprint.
- The system boundary of the product footprint.
- The time period of the activity data collected for the footprint.

Defining the product

If the company has several product SKUs which it wishes to footprint, it may be possible to group these together as one product footprint, if:

- The products are not significantly different e.g., they use the same bill of materials.
- The products can use the same functional unit.
- The company only requires a rough estimation of the average PCF.

The **PCF Data Collection and Calculation Toolkit** is designed to simplify footprinting of multiple products or SKUs in a group. This means there should be little difference between the time taken to footprint upstream processes for one product versus for twenty products. The **PCF Data Collection and Calculation Toolkit** prompts users to document each product which should be individually footprinted in the **'SOLAR PV PRODUCTS'** worksheet. The user may insert additional columns as needed to adequately describe the products.

PRODUCT DATA FOR SOLAR PV MANUFACTURING								Calculate other phases						
A. COMPANY		I												
	Company name:													
	Sector:													
	Address:													
	Phone number:	Į												
	Email:													
	Year:	(ļ
B. PRODUCT I Company prod						I								
Choose a a Economic allo common process		ucts meth nd emissi	od ons are a	located to	o the proc	duct and o	:o-produ(ot(s) base	d on the i	market va	alue of ea	ch when I	they exit	the
Physical alloc	ation: Inputs and	d emissior	ns are allo	ocated to	the produ	uct and by	-product	(s) basec	l on quan	tity/volun	ne of proc	ducts		
Other relations according to para can manually fill	meters. The ente	rprise's p	roduction	n inputs h	nave beer									
Product	Unit					Outpu	ıt/Reven	ue of pro	ducts					Total
	Onix	Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec	
														0
														0
														0
Add Rows	Cle	37												
Add Rows	Select products to calculate carbon footprint													

Figure I: SOLAR PV PRODUCTS worksheet

This worksheet includes data related to information about the business's co-products. Specifically, users need to fill in information such as product names; output/revenue from various types of products. These descriptions are not prescriptive and may be edited as necessary to conform to the product description. Users can add other characteristics of product types by adding other columns/rows. This worksheet also contains information on co-product emissions allocation methods.

Defining the system boundary

It is important to define the product's system boundary so it is explicit what the user has modeled, versus what has been excluded. Not only is this transparency important, but establishing a clear system boundary enables future carbon footprints of similar products to follow the same methodology, and therefore be compared to the first original study.

A product system boundary describes what processes, activities and materials are included within the carbon footprint calculation, and which should be excluded. All processes, services, materials, and energy not directly part of the life cycle of the studied product should be excluded from the footprint.

The system boundary describes all the processes and activities which shall also be captured in the product's process map (see Figure 2 above). The following challenges can arise when defining a system boundary:

- The company wishes to exclude certain processes due to a lack of company data
- The company wishes to exclude certain processes due to assumed immateriality
- The product manufacturing processes create co-products
- The product has complex use phase processes

In general, processes should not be excluded unless absolutely necessary. However, if the company does not require external communication of the footprint to the public then any processes which represent <5% of total GHG emissions or are assumed to be *de minimis* to the footprint may be excluded from the footprint. For more information on how to assess the materiality of a GHG emission source please refer to Annex 2 of the **Technical**

Guidance for Vietnamese Industries on How to Conduct a Product Carbon Footprint (PCF)].

There are two default system boundaries that are generally accepted for a PCF. The company may choose any of these options dependent on the purpose of the PCF. The **PCF Data Collection and Calculation Toolkit** can be customized to fit any of the below system boundaries.

- Cradle-to-grave: includes all footprint processes from the acquisition of raw materials through to the endof-life disposal of the product.
- Cradle-to-gate: includes all footprint processes from the acquisition of raw materials through to the completed manufacturing of the product.

Products sold to consumers should be footprinted cradle-to-grave. Products sold to business customers who are the final user of the product should be footprinted cradle-to-grave. Products sold to business customers who transform the product into another product should be footprinted cradle-to-gate.

Step 2 – Develop the product process map

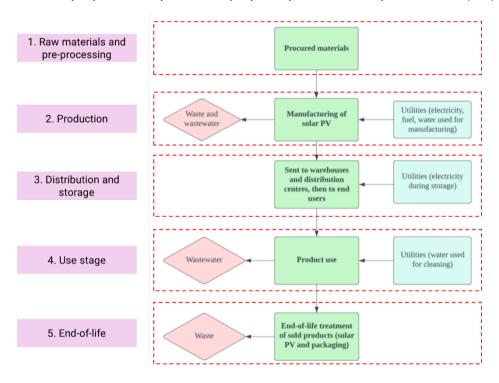
Process maps are a fundamental component of product carbon footprinting because they provide the user with practical information on each step of the product life cycle. By developing a clear and comprehensive process map, the user can clarify exactly which processes need to be captured in the product footprint, and how the processes relate to one another.

A process map is a clear visualization of the materials, activities, processes and geographies which should be included in the PCF. Note:

The process map may be created by any method (e.g., a software package, drawn by hand and scanned)

To save time, the company may include a generic process map which should be amended, if required.

The process map is also useful for communicating to internal and external stakeholders what the footprint covers and what's excluded. This is particularly supportive when conducting quality control and if the company decides to obtain external certification of the PCF at a later stage.


At a minimum, the process map should:

List the key processes in the life cycle, including the inputs and outputs of these processes

Include inputs with smaller materiality combined into groups, as they will be modelled

- Include downstream processes for cradle-to-grave footprints
- Highlight anything to be excluded from the footprint
- Highlight processes owned, operated or controlled by the organisation
- Highlight processes owned, operated or controlled by the organisation's suppliers, if included
- Define the outputs of each process as:
 - 1. Products final products being footprinted
 - Interim-products outputs which become an input to another process
 Co-products outputs which are sold into other value chains
 - 3. Wastes outputs with no value

Figure 2 provides an example process map for a company that produces solar photovoltaics (PVs).

Figure 2: Example process map identified by Company X, producing solar PV panel Source: RCEE-NIRAS, The Carbon Trust, 2024

The life cycle of a PV module is divided into five different stages, namely (i) raw material acquisition and preprocessing, (ii) production, (iii) distribution and storage, (iv) use stage and (v) end of life.

• Raw material acquisition and pre-processing

This stage comprises emissions related to procurement and pre-processing of the raw materials to manufacture PV modules, such as the front and rear glass, laminate layer, and cadmium telluride. This also includes the transportation of procured items to the company's production facilities.

Production

Emissions associated with the production stage includes electricity, liquefied petroleum gas, diesel, and water consumed during the processes of transforming procured materials and components into PV modules ready for sale. Emissions from treatment of manufacturing waste is considered in this stage.

• Distribution and storage

Emissions associated with this stage involve outbound transportation from the production site to clients via land and sea transport, and storage of PV modules at the warehouse.

• Use stage

The use stage includes the use of water for cleaning the PV modules during their expected lifetimes and the subsequent treatment of wastewater during.

• End of life

Emissions from end-of-life treatment of the PV modules is considered during this stage.

Step 3 – Identifying input-output and co-products and wastes and collecting relevant data

For solar PV manufacturing, the following main materials should be considered:

- Rear glass
- Laminate layer
- Cadmium telluride
- Chemicals
- Others

Data collection is typically the most resource intensive step of a PCF assessment. After identifying all attributable activities to produce solar PVs, activity data and emissions factors to describe these activities can be collected.

The following assumptions are a starting point for solar PV manufacturers to calculate the PCF:

- Materials with negligible weight (less than 0.01% of the total weight of input materials) are considered to have a negligible impact on the PCF and can be excluded from calculations: (i) label (ii) coating protects product labels (iii) pallet labels (iv) copper foil (v) cadmium arsenide (Cd3As2), and (vi) polymers.
- Materials with incomplete information and not a key component of PV modules are considered to have a negligible impact on the PCF and can be excluded from the calculations: (i) frame tape (ii) double-sided tape, and (iii) connecting bar.

There is no allocation of inputs required if the production site only produces PV modules.

Step 4 – Identify the downstream process

Downstream processes typically encompass (1) distribution and retail, (2) use-phase and (3) end-of-life. Table 2 describes considerations and activities to take into account during the distribution and retail of solar PVs while Table 3 provides example considerations and assumptions for determining GHG emissions during the use and end-of-life disposal phases.

Table 2: Example activities resulting in GHG emissions during transportation and retail of
solar PVs

Process	Description	Example considerations
Transportation	All incoming and outgoing transport needs to be taken into account, including different legs of transportation for the same input material or product (e.g., road, sea, air).	 Type of transport Distribution distance Vehicle load during return Load constraint
Transport to regional distribution centers	A weighted average can be used instead of footprinting the transportation routes to each distribution center and each retailer.	
Energy consumption during processing and retail	Energy consumption may be required to support certain operations, such as distribution centers or retail stores.	 Electricity use Refrigeration Heating or cooling Forklift emissions (e.g., for receipt and storage of products)
Waste	Any waste produced during distribution must also be accounted for.	

Table 3: Example assumptions for estimating GHG emissions during downstream phases of solar PVs

Distribution	<u>Storage</u>	
and Storage	The average energy consumption in a warehouse is assumed to be 9 kWh per sqft.	

	Storage of PV modules is assumed to be in Vietnam and the	United States
	warehouse's electricity is drawn from the local power grid.	Department of
	Distribution	Energy
	Land transportation for outbound transport is assumed to be using HGV (diesel) and it is average laden.	
	The distribution (lorry and ship transport) is assumed to follow the distribution scenario for Asia Pacific production site and destined for transportation to Europe according to PEFCR	BEIS
		PEFCR: Photovoltaic Modules used in Photovoltaic Power Systems for Electricity Generation.
	It is assumed that no electricity is consumed in the use stage of PV panels (system startup, maintenance, etc.)	
Use Stage	It is assumed that wastewater from use stage has the same density as tap water (1 kg/m³).	
End of Life	The expected lifetime of solar modules is assumed to be 30 years. The end-of-life emission factor that is derived from a study based on the data from First Solar recycling facility in Germany is assumed to be applicable for all sales/use regions of the SKU. The product packaging for PV modules sold is assumed to be negligible.	PEFCR: Photovoltaic Modules used in Photovoltaic Power Systems for Electricity Generation.

If the company wants to expand the scope of the PCF, it can refer to the **Technical Guidance for Vietnamese** Industries on How to Conduct a Product Carbon Footprint (PCF).

Step 4 – Calculating the product footprint

A PCF calculates the total impact of GHG emissions from a product or product system and is expressed in 'carbon dioxide equivalent' or 'CO2e'. As described further in Table I, CO2e is a common unit which expresses the total global warming impact, or GWP, of GHG emissions. This allows different GHGs to be summed up based on their impact relative to carbon dioxide. CO2e is therefore a standard measurement by which we can compare and aggregate the impact of all GHGs.

Companies should follow the below steps when calculating the GHG impact of a product:

Selecting a GWP value

The methodology for calculating GWPs is evolving and the values are re-evaluated every few years by the Intergovernmental Panel on Climate Change (IPCC). The most updated GWP factors were published by the IPCC in its Sixth Assessment Report.⁶ Companies can refer to this IPCC guidance when selecting GWPs or they could use the GWPs used by the Government of Vietnam in the latest version of Vietnam's national GHG emissions inventory.

Calculating CO2e using collected data

Companies should calculate GHG emissions by using the collected activity data and emissions factors as shown in Figure 3.

Carbon footprint	=	Sum of (all materials, energy, fugitive and waste across all activities in a product's lifecycle multiplied by their GHG emission factors)					
Carbon footprint of an activity	=	Activity data x Emission Factor (kgCO ₂ e per ur					
	=	cgCO2e / kWh/Kg/Km etc.					
		The amount of G unit of ac					

Figure 3: Summary of a product carbon footprint calculation

Activity data

Primary data for input volumes, output and waste volumes for each production stage of the procured materials and components, and manufacturing must be collected with names of suppliers and countries of destination markets to derive the distance travelled in the inbound and outbound transportation.

Example evidence which can be used as primary data includes:

- Quantities of cadmium telluride procured.
- Quantities of electricity/fossil fuel consumed in the production of solar panels.
- Quantities of wood waste disposed of.
- Transportation of input materials, including origin and destination, distance, and transportation type.

The emission factors (EFs) for garments and textiles provided in Table 4 below can serve as a starting point for the PCF calculation. Other sources can be found in the **Technical Guidance for Vietnamese Industries on How to Conduct a Product Carbon Footprint (PCF)**, – Section 3.

⁶ IPCC Sixth Assessment Report, report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf, refer table 7.15 – Emissions metrics for selected species: global warming potential (GWP), global temperature change potential (GTP).

Life Cycle Stage	Activity Description	Activity Data	Emission Factor		
Raw Materials and Pre- processing	Cradle-to- supplier's gate emissions from input materials	Mass of input materials purchased (e.g., front and rear glass, laminate layer, cadmium telluride, etc.)	EFs reflecting emissions from cradle-to-supplier's gate activities, based on kgCO2e / kg of materials		
	Emissions from inbound transport of input materials	Distance travelled between supplier's and company's site, categorized by transport mode (e.g., sea, air or land).	EFs reflecting the full lifecycle emissions from vehicles transporting the input materials, on a kgCO2e / tonne.km basis		
Production	Full lifecycle GHG emissions related to utility energy consumption	Quantity of energy and water used (e.g., electricity in kwh, liquefied petroleum gas in tonnes)	EFs reflecting cradle-to-gate emissions (including all life cycle phases, from the extraction of raw materials to their use), on thebasis of e.g., kgCO ₂ e / kwh, kgCO ₂ e / tonne. EFs for electricity reflects average grid emissions in Vietnam.		
	Emissions from the treatment and disposal of waste generated from manufacturing PV modules	Mass of waste generated (e.g., scrap metal waste)	EFs reflecting emissions from a specified waste disposal method, on the basis of kgCO ₂ e / kg of waste recycled, incinerated, landfilled, etc.		
Distribution and Storage	Emissions from the transportation and distribution of sold PV modules	Distance travelled between the company and client site, categorized by transportation	EFs reflecting the full lifecycle emissions from vehicles transporting the sold product, on a kgCO2e / tonne.km basis		

Table 4: Activity data and EF combinations for standard activities across the lifecycle

Life Cycle Stage	Activity Description	Activity Data	Emission Factor
		mode (e.g sea, air, or land	
		Mass of PV module transported	
Use Stage	Emissions from the use of PV modules (e.g., water for cleaning, and wastewater treatment)	Quantity of water for cleaning and wastewater treated	EFs reflecting emissions covering cradle-to-supplier's gate emissions on the basis of kgCO2e/ m3 of product
End of Life	Emissions from the disposal of sold PV modules	Mass of sold PV modules	EFs reflecting emissions from a specified waste disposal method, on the basis of kgCO2e/ kg of waste recycled, incinerated, landfilled, etc.

It is usually difficult for solar PV manufacturers to access EFs for input materials from their suppliers. Instead companies can purchase EFs from data service providers, typically by buying a license to access their database. Table 5 below provides sources of where companies can obtain emission factors and a more extensive list of data providers is available in the **Technical Guidance for Vietnamese Industries on How to Conduct a Product Carbon Footprint (PCF).**

Depending on the needs of the company, the purchase of EFs can be considered at a later stage.

Table 5: Reference sources for emission factors

Emission Factor	Source	Geography specified in the database
Raw materials		
cadmium production, semiconductor-grade	Ecoinvent 3.10 ⁷	Rest of the world (RoW)
market for cadmium telluride, semiconductor-grade	Ecoinvent 3.10	Global (GLO)

⁷ https://ecoinvent.org/ecoinvent-v3-10/

Emission Factor	Source	Geography specified in the database
solar glass production, low iron	Ecoinvent 3.10	RoW
cadmium chloride production, semiconductor-grade	Ecoinvent 3.10	RoW
chemical production, organic	Ecoinvent 3.10	GLO
synthetic rubber production	Ecoinvent 3.10	RoW
primary zinc production from concentrate	Ecoinvent 3.10	RoW
silicon production, electronics grade	Ecoinvent 3.10	RoW
cable production, unspecified	Ecoinvent 3.10	GLO
polyvinylchloride production, bulk polymerisation	Ecoinvent 3.10	RoW
ethylene vinyl acetate copolymer production	Ecoinvent 3.10	RoW
aluminium production, primary, ingot	Ecoinvent 3.10	China (CN)
steel production, electric, low-alloyed	Ecoinvent 3.10	RoW
market for adhesive, for metal	Ecoinvent 3.10	RoW
chemical production, organic	Ecoinvent 3.10	GLO
nitric acid production, product in 50% solution state	Ecoinvent 3.10	CN
hydrogen peroxide production, product in 50% solution state	Ecoinvent 3.10	RoW
market for nitrogen, liquid	Ecoinvent 3.10	RoW
argon production, liquid	Ecoinvent 3.10	RoW
potassium hydroxide production	Ecoinvent 3.10	RoW
sodium hydroxide to generic market for neutralising agent	Ecoinvent 3.10	RoW
chemical production, inorganic	Ecoinvent 3.10	GLO

Emission Factor	Source	Geography specified in the database
carbon dioxide production, liquid	Ecoinvent 3.10	RoW
oxalic acid production	Ecoinvent 3.10	CN
chemical production, organic	Ecoinvent 3.10	GLO
hydrogen peroxide production, product in 50% solution state	Ecoinvent 3.10	RoW
sulfuric acid production	Ecoinvent 3.10	RoW
market for sodium hydroxide, without water, in 50% solution state	Ecoinvent 3.10	RoW
Utilities		
Diesel (100% mineral diesel) - scope 1 + well-to-tank (WTT)	Government decision ⁸	Vietnam
LPG - scope I + well-to-tank (WTT)	Government decision	Vietnam
Electricity Vietnam - scope 2 + transmission &	Government	Vietnam

distribution (T&D) + WTT	decision ⁹	Vietnam
Water supply (water delivered through a centralized supply network)	BEIS 2022	Not available (NA)

Waste Disposal

Wastewater disposal (water returned into the sewage system through main drains)	BEIS 2022 ¹⁰	NA
Commercial and industrial waste (incineration)	BEIS 2022	NA
Wood (closed loop)	BEIS 2022	NA

⁸ https://thuvienphapluat.vn/van-ban/Tai-nguyen-Moi-truong/Quyet-dinh-2626-QD-BTNMT-2022-cong-bo-he-so-phat-thai-phuc-vu-kiem-ke-khi-nha-kinh-532253.aspx

 $^{^{9}\,}http://www.dcc.gov.vn/van-ban-phap-luat/1110/He-so-phat-thai-luoi-dien-Viet-Nam-2022.html$

¹⁰ https://www.gov.uk/government/publications/beis-annual-report-and-accounts-2022-to-2023

Emission Factor	Source	Geography specified in the database
Plastics: average plastics (closed loop)	BEIS 2022	NA
Metal: scrap metal (open loop)	BEIS 2022	NA
Glass (open loop)	BEIS 2022	NA
Waste from electrical and electronic equipment (also call e-waste) WEEE - mixed (open loop)	BEIS 2022	NA
Mineral oil (closed loop)	BEIS 2022	NA
Batteries (open loop)	BEIS 2022	NA
Paper and board: mixed (closed loop)	BEIS 2022	NA
CdTe PV module EoL disposal		NA
Transport		
HGV (diesel) - articulated - average laden - full life cycle	BEIS 2022	NA
Container ship (average) - Full life cycle	BEIS 2022	NA

H https://iea-pvps.org/

ANNEX I - PRACTICAL SKILLS

The user guide for this tool provides comprehensive instructions on how to effectively utilize its features and functionalities. It includes step-by-step procedures for setting up the tool, navigating its interface, and utilizing various tools and options. Users will learn how to input data, interpret results, and customize settings to suit specific needs. Additionally, troubleshooting tips and frequently asked questions are included to assist users in overcoming common challenges. The guide aims to empower users with the knowledge and skills necessary to maximize the tool's capabilities and achieve optimal outcomes efficiently.

STRUCTURE OF THE TOOL

The tool includes 9 worksheets with the following functions:

Worksheet	Function
INTRODUCE	Provides general introduction to the tool. Available tool functions and methods used to calculate the carbon footprint of products
INSTRUCTION S	Explains the structure and steps to use the tool
PRODUCT	Data entry to define the products and their system boundary
PHASE I	Data entry and calculation of GHG emissions from production and transportation of raw materials used in products
PHASE 2	Data entry and calculation of GHG emissions from the product manufacturing stage
PHASE 3	Data entry and calculation of GHG emissions from product distribution and retail stages
PHASE 4	Data entry and calculation of GHG emissions from the product use stage
PHASE 5	Data entry and calculation of GHG emissions from post-use product treatment and recycling stages

RESULTS

Summarizes the results of calculating the product's carbon

footprint

Toolbar

On top of each worksheet there is a toolbar including buttons to help users navigate and move to the next calculation step.

*Navigation buttons, move to other sheets

Color symbol

The data cells are color-coded so that they can provide users with clear visual instructions on how to use the tool. Specifically, the cells in the tool will include the colors in Table 6.

Color	Regulations
	User data boxes must be filled in automatically
	The data cell has an automatic formula, which does not encourage users to edit it themselves. However, users can change the value of the cell to match the business's input data
	The data cell has an automatic formula and cannot be edited
	The data box requires the user to select information from a drop- down list.

Table 6: Cell color definitions

STEPS TO USING THE TOOL

Step I: Enter product data

After reading the **INTRODUCTION** and **INSTRUCTIONS** worksheets for using the tool, the user should select the "Calculate" button above the toolbar on the INSTRUCTIONS worksheet to move to the **SOLAR PV PRODUCTS** worksheet.

INSTRUCTIONS

Calculate

×	
	Select the field "SOLAR PV"
	×

Products worksheet

Instruction			PF	RODUCT	DATA I	OR SO	LAR PV	MANU	ACTUR	ING				Calculate other phases
A. COMPANY														
	Company name:													
	Sector:													
	Address:													
	Phone number:													
	Email:													
	Year:													
B. PRODUCT	DATA													
Company pro	ducts													
						1								
Choose a	allocation co-produ	ucts meth	od posiare a	llocated tr	the proc	fuct and r	o-produc	tisi base	d on the	market va	lue ot ea	ch when	theu evit	the
common proces		d offiliaan	5113 GIC GI	nocated te	, and proc	1000 0110 0	o produc	(3) 5030				or miori	a loy oxit	aic
Physical allo	cation: Inputs and	emission	os are allu	ocated to I	the produ	ict and bu	i-product	s) based	t on quar	titukyolum	e of proc	fucts		
	•													
	n <mark>ships</mark> : Inputs and rameters. The ente													
	II in the emission a					11001 (1110)		ianno pi	iyolodi ol	000110111	0.0100000	ю. про. т		00010
						Outou	ıt/Reven	ue of pro	oducts					
Product	Unit	Jan	Feb	March	April	Outpu May	ıt/Reven June	ue of pro July	oducts Aug	Sep	Oct	Nov	Dec	Total
Product	Unit	Jan	Feb	March	April				-	Sep	Oct	Nov	Dec	0
Product	Unit	Jan	Feb	March	April				-	Sep	Oct	Nov	Dec	0 0 0
Product	Unit	Jan	Feb	March	April				-	Sep	Oct	Nov	Dec	0 0 0
			Feb	March	April				-	Sep	Oct	Nov	Dec	0 0 0
Product Add Rows	Unit		Feb	March	April	May	June	July	-	Sep	Oct	Nov 	Dec	0 0 0
			Feb	March	April	May Select p		July	-	Sep		Nov	Dec	0 0 0
			Feb	March	April	May Select p	June products to	July	-	Sep	Oct	Nov	Dec	0 0 0
		ar				May Select p	June products to arbon foot	July calculate					Dec 	0 0 0

The **SOLAR PV PRODUCTS** worksheet has two major sections for data entry:

A. General information on the business Users need to enter information about:

Facility name	Phone number
Sector	Email
Address	Year of calculation

A. COMPANY INFORMATION	
Company name:	
Sector:	
Address:	
Phone number:	
Email:	
Year:	

B. Company products

For this section, users can enter information related to the products manufactured by the business and select a product for carbon footprint calculation.

Company products	S													
Choose a	allocation co-prod	ucts metho	d											
Economic allocatio	on: Inputs and emi	ssions are	allocated t	o the produ	ict and co-	product(s) based on	the marke	t value of e	ach when t	hey exit the	common pro	ocess	
Physical allocation	: Inputs and emis	sions are al	located to	the product	t and by-p	roduct(s)	based on q	uantity/vol	ume of pro	ducts				
Other relationships enterprise's product														
roduct type.														
Product	Unit	Jan	Feb	March	April		Output/Rev June	venue of pi July	-	Sep	Oct	Nov	Dec	Total
	Unit	Jan	Feb	March	April	May		-	roducts Aug	Sep	Oct	Νον	Dec	- Total
	Unit	Jan	Feb	March	April			-	-	Sep	Oct	Nov	Dec	- Total
	Unit	Jan	Feb	March	April			-	-	Sep	Oct	Nov	Dec	- Total
	Unit	Jan	Feb	March 	April			-	-	Sep	Oct	Nov	Dec	- Total

Before entering information about product types, users need to **Choose an Allocation Emission Co-Products (AEC) method:** The Allocation Emission Co-Products (AEC) method is used in life cycle assessments to account for environmental impacts from co-products produced alongside a primary product. It involves dividing these impacts between the primary product and its co-products based on criteria like economic value or mass. By separately assessing the environmental burdens of both the primary product and its co-products, this method aims to provide a fair representation of their combined environmental footprint. This approach is crucial for accurately understanding and managing the environmental impacts of manufacturing processes that yield multiple outputs. A pull-down list includes three methods for users to choose from:

• Economic allocation: Inputs and emissions are allocated to the product and co-product(s) based on the market value of each.

Economic allocation	
Physical allocation	
Other relationships	

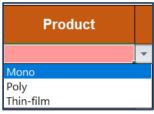
• Physical allocation: Inputs and emissions are allocated to the product and by-product(s) based on quantity/volume of products.

Other relationships: Inputs and emissions are

allocated to products and by-product(s) based on established relationships and detailed calculations according to parameters. The enterprise's production inputs have been identified rather than its physical or economic relationships. Therefore, users can manually fill in the emission allocation rate of this product type. After choosing the emission allocation method, users must enter the **Output/Revenue information of products** in the table with the core information as follows:

- Product: The name of the product is suggested by a drop-down list
- Unit: If the user has selected the allocation method "According to economic value", the unit will be automatically displayed as "Million VND". If the user chooses the remaining 2 allocation methods, the unit column will be left blank and the user will have to manually fill in the corresponding units for each product type.
- Output/Revenue of the product:

If users need to add rows to the table, please click on the button "Add Rows" at the bottom of the table. If the user wants to delete information about the product types, please click on the button "Clear". The data in the collection table will automatically be deleted and the user will start re-filling information from the step **Choose**


a product allocation method.

After entering all the information above, users click on the button "Select products to calculate carbon footprint" at the bottom to continue. Two cases will occur:

Case I: If the user chooses the allocation co-product method as economic allocation or physical allocation (must include the condition that the products share a consistent statistical unit), the tool will support the calculation of the emissions rate allocation for each type of product. The users only need to **select a product for life cycle GHG calculations** among the products listed.

Product	Unit					Out	put/Revenu	e of produ	cts					Total
Product	Unit	Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Total
Mono	Million VND	100	100	100	100	100	100	100	100	100	100	100	100	1200
Poly	Million VND	200	200	200	200	200	200	200	200	200	200	200	200	2400
														0
														0
														0
Add Rows	Cle	ar					products to arbon footp							
Product	Jan	Feb	March	April	May	Rate June	July	Aug	Sep	Oct	Nov	Dec		
Mono	33%	33%	33%	33%	33%	33%	33%	33%	33%	33%	33%	33%		
Poly	67%	67%	67%	67%	67%	67%	67%	67%	67%	67%	67%	67%		
	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		
	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		
	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		
Total	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%		
Select a pro	duct for life cycle GH(G calculatio		Mono Poly			ļ	•		>				
		Jan	Feb	March	۸pril	May	June	July	Aug	Sep	Oct	Nov	Dec	
GHG Emi	ission rate	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
					Enter dat	a for prod	uct inputs							

Case 2: If the user chooses the method "Other relationships" or if each product has a different statistical unit, a user form will appear requesting the following information:

JserForm1	
enterprises are not cons conversion coefficients user need to fill in infor	units of the types of products produced by sistent. Currently, the tool does not have unit available between product types. Therefore mation related to the emission rate of the rbon footprint calculation.
Select products to calculate carbon footprint	
Emission rate of product type in the emission structure	
	For example: The emission rate is 70%. Fill in "70%" in the blank box

• Select Products: choose the products for calculation of carbon footprint

• Emission rate of the product: Using available data, adjust the emission rate of that product in the enterprise's emission structure. For example: If the emission rate is 70%, fill in the text box as "70%"

• Click on the Finish button

After entering all the requested information for each product type and selecting the product for calculation of the carbon footprint, the user should click on the button "Calculate other phases" on the toolbar or "Enter data for product inputs" at the bottom of the worksheet.

If the user forgets to select a product type, a notification will appear	Microsoft Excel
	Products need to be selected to calculate carbon footprint
	ОК
×	
SELECT A PRODUCT'S LIFE CYCLE PHASE FOR EMISSION CALCULATION	If all information has been filled in, a user form appears allowing the user to select the emission stages in the product life cycle.
Phase 1: Production and transportation of raw materials	
Phase 2: Product production	
Phase 3: Distribution and retail	
Phase 4: Using the product	
Phase 5: Processing and recycling	
	Step 2: Enter data and calculate emissions

for phase I: Production and transportation of raw materials

After selecting Phase I: Production and transportation of raw materials in the user form, the **SOLAR PV PHASE I** worksheet will appear.

		INPL	JT DATA PHASE	1: PROD	UCTION	AND TRA	NSPORT		DF RAW I	MATERIA	LS					Calculate other phases
					II that requires user red dropdown list	to select from a pr										
Fuel	Describe	Unit	Emission Factor						Fuel q							Total
- der	Desembe		(tCO2eq/unit)	Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec	
		ton	10	60	65	70	75	80	85	90	95	100	105	110	115	105
																1
																1
	Total			60	65	70	75	80	85	90	95	100	105	110	115	105
Add Rows																
Fuel			hase 1: Production	and transpo	ortation of r	aw materia	ils to produ	ce product	ts (tons CO2	leq)			Total			
Fuel	Jan	Emissions from p Feb	hase 1: Production March	and transpo April	ortation of r May	aw materia June	ils to produ July	ice product Aug	ts (tons CO2 Sep	leq) Oct	Nov	Dec	Total			
Fuel	Jan 200.00	Feb									Nov 366.67	Dec 383.33	Total 3,500.00			
Fuel -		Feb	March	April	May	June	July	Aug	Sep	Oct						
Fuel -	200.00	Feb 216.67	March 233.33	April 250.00	May 266.67	June 283.33	July 300.00	Aug 316.67	Sep 333.33	Oct 350.00	366.67	383.33	3,500.00			
Fuel -	- 200.00	Feb 216.67	March 233.33 -	April 250.00	May 266.67 -	June 283.33 -	July 300.00	Aug 316.67	Sep 333.33	Oct 350.00	366.67	383.33	3,500.00			
Fuel -	200.00	Feb 216.67	March 233.33 - -	April 250.00 - -	May 266.67	June 283.33 - -	July 300.00 - -	Aug 316.67	Sep 333.33 - -	Oct 350.00 - -	366.67	383.33	3,500.00			

Users will need to fill in the information for the first table including

- Fuel: Fossil fuels which were used for phase I
- Description: A more detailed description of the fuel
- Unit: Statistical unit of the fuels. For example: tons, thousand liters, TOE, million VND.
- Emission factor: tCO2eq/unit
- Quantity of fuel used

After entering the requested information in Table I, the GHG emission results will be presented in the table below.

To move to the next stage, the user presses the button "Calculate other phases" and the stage selection user form will be displayed.

Step 3: Enter data and calculate emissions for phase 2: Product manufacturing

After selecting Phase 2: Product Production in the user form, the **SOLAR PV PHASE 2** worksheet will appear.

Instruction					INPUT DAT	A PHASE 2: PROD	JCT PRC	DUCTIO	ı							Calculate phase	3	Res	alts
																Calar symbols of open cell for the use to input p		7	
Direct fuel combustion a	activities														10	ell with pro-built formula that a Industries an error is assuring ell that should not be added			
1.1 Fuel used in the combi	ustion process com	es from a fixed source. F	or example: Boiler firing,	heating, etc.												el that requires user to select (Ined dropdown kit	han a par		
Fuel	Unit	NCV (GJ/unit)	EF CO2	EF CH4	EF N2O (kg N2O/GJ)						nption and		sions from s						Total
			(kg CO2/GJ)	(kg CO4/GJ)	ar many rug many rug		Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec	
						Fuel consumption							300						- 30
						Emission (tons CO2eq)													
						Fuel consumption													
						Emission (tons CO2eq)													
						Fuel consumption													
						Emission (tons CO2eq)													
						Fuel consumption													
						Emission (tons CO2eq)													
						Fuel consumption													
						Emission (tons CO2eq)													
			Total (tons CO2eq				1	ſ	0	0	0	1	0	0	ſ	1 (1 0	0	
Add Rows		Add/Edit fuels]															

The user must enter the requested information on GHG emission sources, including:

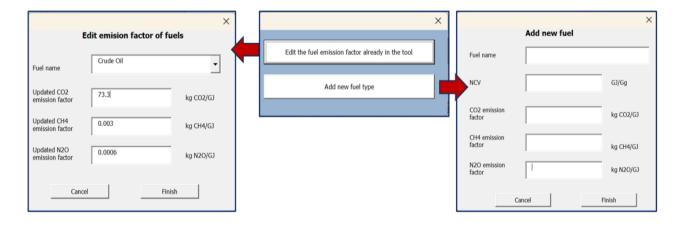
- Direct fossil fuel combustion
 - Stationary fossil fuel combustion
 - $\circ \quad \text{Mobile fossil fuel combustion} \\$
- Leaking refrigerants from refrigeration equipment
- Industrial processes
- Wastewater treatment activities

- Purchased steam, cooling, heat, and electricity
- Other activities

Step 3.1: Direct fossil fuel combustion – Stationary fossil fuel combustion

I. Direct fuel combustion a	ctivities															th pre-built formula that shou misss an error is accurring.	ld nut be		
1.1 Fuel used in the combu	stion process com	es from a fixed source. F	For example: Boiler firing,	heating, etc.											Ault	et should not be edited at requires user to select from dropdown list	11 JPh		
Fuel	Unit	NCV (GJ/unit)	EF CO2	EF CH4	EF N2O (kg N2O/GJ)				F	uel consun	nption and I	GHG emiss	ions from s	tationary co	mbustion				Total
i dei		NCY (Column)	(kg CO2/GJ)	(kg CO4/GJ)	LI 1120 (kg 1120100)		Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec	
						Fuel consumption	1000	1100	1200	1300				1700	1800	1900	2000	2100	
Natural Gas Liquids	TOE	41.868	64.2	0.003	0.0006	Emission (tons CO2eq)	899	989	1079	1169	1259	1349	1439	1529	1619	1709	1799	1889	16729
						Fuel consumption													0
						Emission (tons CO2eq)													0
						Fuel consumption													0
						Emission (tons CO2eq)													0
						Fuel consumption													0
						Emission (tons CO2eq)													0
						Fuel consumption													0
						Emission (tons CO2eq)													0
			Total (tons CO2eq				899	989	1079	1169	1259	1349	1439	1529	1619	1709	1799	1889	16729
Add Rows		Add/Edit fuels		1															

mmBTU ton


The user fills in the following information:

- Fuel: Select fuel types from the drop-down list
- Unit: Select unit from the drop-down list
- Heating value, emission factors: The tool automatically shows the heating value associated with the selected fuel type

If the tool does not have all the relevant fossil fuel types which the business is using or the user wants to edit the fossil fuel emission factors, the user can select the "Add/Edit fuel types" button. A user form will appear as follows:

Unit

. .

Users can then edit the emission factors of the fuel types or add new fuel types that suit the company's fossil fuel burning activities.

• Fuel consumption: Enter fossil fuel consumed each month. The emissions results will appear below. **Step 3.2: Direct fossil fuel combustion – Mobile fossil fuel combustion**

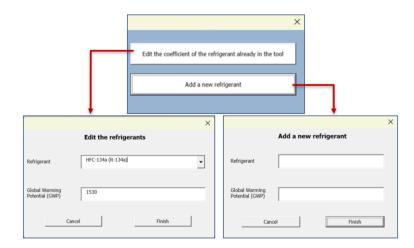
Repeat the steps implemented above

Crude Oil	
Orimulsion	
Natural Gas Liquids	
Motor Gasoline	
Aviation Gasoline	
Jet Gasoline	
Jet Kerosene	
Other Kerosene	

Fuel	Unit	NCV (GJ/unit)	EF 002	EF CH4	EF N2O (kg N2O/GJ)				F	uel consun	ption and (GHG emissi	ions from s	tationary co	mbustion				
i vei	Unit	HCY (Outurnit)	(kg CO2/GJ)	(kg CO4/GJ)	LT NEO (Kỹ NEOTON)		Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec	4
						Fuel consumption	200	200	200	200	200	200	200	200	200	200	200	200	
Biodiesels	TOE	41.868	70.8	0.003	0.0006	Emission (tons CO2eq)	132	136	140	143	146	149	151	153	165	157	159	160	a
						Fuel consumption													T
						Emission (tons CO2eq)													T
						Fuel consumption													1
						Emission (tons CO2eq)													1
						Fuel consumption													1
						Emission (tons CO2ea)													1
						Fuel consumption													1
						Emission (tons CO2eq)													T
			Total (tons CO2eq				132	136	140	143	146	149	151	153	155	157	159	160	Л

Step 3.3: Refrigerants used in refrigeration equipment

Refrigerants are chemical compounds used in cooling systems to absorb and release heat, enabling refrigeration and air conditioning. Common types include Chlorofluorocarbon (CFCs), Hydrochlorofluorocarbons (HCFCs), and Hydrofluorocarbons (HFCs), each with varying environmental impacts, particularly concerning ozone depletion and greenhouse gas effects.



The user fills in the following information:

- Refrigerants: Select refrigerant type from the drop-down list
- Unit: The default unit is kg
- GWP: The tool automatically shows the GWP associated with the selected refrigerant.

If the tool does not have all the relevant refrigerant types which the business

is using or the user wants to edit the GWP, the user can select the "Add/Edit refrigerants" button. A user form will appear as follows:

The user can edit the refrigerant GWP or add other refrigerants suitable for the business.

49 50	Refrigerants	
51		Ŧ
	-23 (R-23)	
	-32 (R-32) -134a (R-134a)	
	-227ea (R-227ea)	
	C-22 (R-22)	
	C-123 (R-123)	
R-41		
R-40	4A	

• Quantity of refrigerants used in refrigeration equipment and GHG emissions: Users enter information about the monthly amount of refrigerant used in the business' refrigeration equipment. The results of calculating greenhouse gas emissions from refrigerant leaks will be shown in the white cells below.

	Unit of output from	EF CO2	EF CH4					Output	of production	n processes	and GHG e	missions fr	om those p	rocesses				
Processes	the process	(kg CO2/unit)	(kg CO4/unit)	EF N2O (kg N2O/unit)		Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Tota
Ammonia production process					Quantity of Outputs	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	1,2
sing reforming – natural gas	ton	1147.50			Emission (tons CO2eq)	25.50	26.30	27.00	27.63	28.18	28.69	29.14	29.56	29.93	30.28	30.60	30.89	B
					Quantity of Outputs													H+[
					Emission (tons CO2eq)													-
					Quantity of Outputs													-
					Emission (tons CO2eq)													-
					Quantity of Outputs													
					Emission (tons CO2eq)													-
					Quantity of Outputs													
					Emission (tons CO2eq)													-
	r				Quantity of Outputs													-
					Emission (tons CO2eq)													-
		Tabel (b)	ons CO2eq)			26	26	27	28	28	29	29	30	30	30	31	31	3

Step 3.4: Industrial processes

The user fills in the following information:

- Processes: Select industrial processes from the drop-down list
- Unit: The tool will automatically provide statistical units for output products from industrial processes available in the tool

Emission factor: The tool automatically shows EFs associated with the selected industrial process

If the tool does not have all the relevant industrial processes of the business, or the user wants to edit the EF, the user can select the "Add/Edit industrial processes" button.

• Output of production processes and GHG emissions from those processes: Enter the output corresponding to each selected industrial process. The results of greenhouse gas emissions resulting from these processes will be calculated and shown in the white cells below.

Step 3.5: Wastewater treatment activities

IV. Wastewater treatment a	ctivities													
Choose wastewater treatmen	t measures			Aerobic tre	atment plant - Good mana	igement								
If there is no measure your business is	using or you need to edit	the coefficients, please click		Add/Edit measur	25									
	Unit	Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Total
Amount of wastewater	m3	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	12000
Chemical Oxygen Demand (COD)	kgCOD/m3	100	100	100	100	100	100	100	100	100	100	100	100	\sim
CH4 is recovered in the treatment system	kg													\sim
MCF		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	/
Maximum methane production capacity	(kg CH4/kg COD)	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	\square
Sludge is removed	kg COD/month													-
Emission	tons CO2eq	555.56	572.92	588.24	601.85	614.04	625.00	634.92	643.94	652.17	659.72	666.67	673.08	7,488.09

Choose wastewater treatment measures: Users select the wastewater treatment method employed by their business. If the tool does not include the specific wastewater treatment method used by the business, or if users wish to modify the indicators of the available methods, they can use the button "Add/Edit measures".

Choose wastewater treatment measures		Aerobic treatment plant - Good management
If there is no measure your business is using or you nee	to edit the coefficients, please clici	Anaerobic tank for sludge treatment
Unit	Jan	Anaerobic tank (e.g., UASB, Fixed Adhesion Anaerobic Tank) Shallow anaerobic lakes Deep anaerobic lake

• Amount of wastewater treated: Users enter monthly data on the amount of wastewater treated at the enterprise

- Chemical Oxygen Demand (COD): COD is a measure of the amount of organic compounds in water that can
 be oxidized by strong chemical oxidants. It is commonly used as an indicator of the amount of organic pollution
 in water. COD is determined through a chemical reaction that oxidizes the organic matter present, producing
 a measurable amount of oxygen consumed during the process. High COD levels indicate a larger amount of
 organic pollutants present in the water, which can affect water quality and the health of aquatic ecosystems if
 discharged untreated. Users need to enter the COD of the treated wastewater of the business.
- Methane (CH4) recovered by the treatment system: CH4 recovered by the treatment system refers to methane gas that is captured and extracted during a wastewater treatment process. CH4 can be produced through anaerobic digestion of organic matter in wastewater treatment facilities. Recovering CH4 involves capturing it before it is released into the atmosphere. Users need to fill in the amount of CH4 recovered during wastewater treatment
- Methane correction factor MCF; Maximum methane production capacity and Sludge removed: The tool will
 automatically provide the corresponding wastewater treatment method selected.

	Unit	Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Total
Generation	kWh	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	96,000
Emission Factor	tCO2/MWh	0.6766	0.6766	0.6766	0.6766	0.6766	0.6766	0.6766	0.6766	0.6766	0.6766	0.6766	0.6766	
Emission	tons CO2eq	1.20	1.24	1.27	1.30	1.33	1.35	1.37	1.39	1.41	1.43	1.44	1.46	16
Steam pressure Boiler efficiency Emission Factor CD2 Emission Factor CH4 Emission Factor N2O		0.0 4 73 0.0 0.0	0 1.3 103 006	% kgCO2/GJ kgCH4/GJ kgN2O/GJ										
	Unit	Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Total
mount of steam	m3	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	120,00
Amount of converted heat	KJ	1835031.03	1835031.03	1835031.03	1835031.03	1835031.03	1835031.03	1835031.03	1835031.03	1835031.03	1835031.03	1835031.03	1835031.03	22,020,3
mission	tons CO2en	29.99	30.93	31.76	32.49	33.15	33 74	34.28	34.76	35.21	35.61	35.99	36.34	404

Step 3.6: Purchased steam, cooling, heat, and electricity

Purchased Electric

- Generation: Users fill in the monthly amount of electricity purchased from the grid
- Emission factor: The EF of the electricity grid will automatically be provided by the tool corresponding to the enterprise's inventory year entered in the **SOLAR PV PRODUCTS** sheet.

Steam

- Type of fuel for the boiler: The user selects the type of fossil fuel used to produce steam from the drop-down list
- Steam pressure: The user selects the pressure of the produced steam from the drop-down list
- Boiler efficiency: The user enters the boiler's efficiency
- Emission factor: EFs are automatically updated relative to the fossil fuel used to produce the steam
- Amount of steam: The user fills in the monthly amount of produced steam
- Amount of converted heat: The amount of heat converted is automatically calculated

Step 3.7: Other activities

Repeat step 2, adding emission sources not available in the tool

		CO2 emission	CH4 emission	N2D emission factor						Qua	ntity of fuel u	used						
Fuel/Process	Unit	factor (kgCO2/unit)	factor (kgCH4/unit)			Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Tot
					Fuel consumption													
					Emission (tons OB2eq)													
					Fuel consumption													
					Emission (tons OD2eq)													
					Fuel consumption													
					Emission (tons CD2eq)													
					Fuel consumption													
					Emission (tons CO2eq)					r		7	7					
					Fuel consumption													
					Emission (tons OD2eq)													
		Total (tons CO2eq)			0	0	0	0	0	0	0	(0	0	0		0

Step 4: Enter data and calculate emissions for phase 3: Distribution and retail

After selecting Phase 3: Distribution and retail in the user form, the **SOLAR PV PHASE 3** worksheet will appear.

uction					PHASE 3 INPUT D	ATA. DISTRIC			-11L							phases		F
Transportation	Size	EF LUZ	EF UH4	EF N2O (kg						Product trar	isport dista	nce and emi	ssions					Tống
rransportation	5126	CO2/top km)	(kg CD4/ton km)	N2Citon.km)		Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec	rong
					Distance traveled by product (tons.km)													-
					Emission (tons CO2eq)	-	-											-
					Distance traveled by product (tons.km)													-
					Emission (tons DD2eq)	-	-		-			-	-	-				-
					Distance traveled by product (tons.km)													
					Emission (tons CO2eq)			1.1	1.1	1.1	1.1	1.1		1.1	1.1	1.1	1.1	-
					Distance traveled by product (tons.km)													
					Emission (tons CO2eq)		-	1.1			1.1				1.1			
					Distance traveled by product (tons.km)													-
					Emission (tons CO2eq)	-	-	-		-							-	-
					Distance traveled by product (tons.km)													-
					Emission (tons CD2eq)		-			-	1.1		-	1.1	1.1		-	-
		Total Emissio	n (tons CO2eq)				-		-			-	-				-	

- Transportation: Select vehicle types from the drop-down list
- Size: Select the size of the corresponding vehicle type from the drop-down list
- Emission factors: The EFs of the selected vehicle will load automatically
- Distance transported: Fill in the volume of goods movement for each type of vehicle

If the user wants to edit emission factors or add other types of transportation, the user can click on the "Add/Edit transportation" button.

			Edit the vehicle factor alrea	le			
Edit en	Nission factors of transpor	tation	×		Transportation	Add new transportatio	
Updated CO2 emission factor Updated CH4 emission factor Updated N2O emission factor	0.6292	kg CO2/ton.km kg CH4/ton.km kg N2O/ton.km			Size CO2 emission factor CH4 emission factor N2O emission factor		kg CO2/ton.km kg CH4/ton.km kg N2O/ton.km
Cance	el Finish				Q	Fini	sh

Step 5: Fill information and calculate emissions for phase 4: Using the product

Do the same as step 2

Step 6: Fill information and calculate emissions for phase 5: Processing and Recycling

Do the same as step 2

Step 7: View the carbon footprint calculation results

Select the "Results" button on the toolbar, the **RESULTS** worksheet will appear.

Product's Data

Calculate other phases

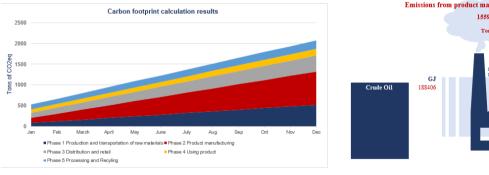
REPORT ON PRODUCT CARBON FOOTPRINT CALCULATION RESULTS

A. General information

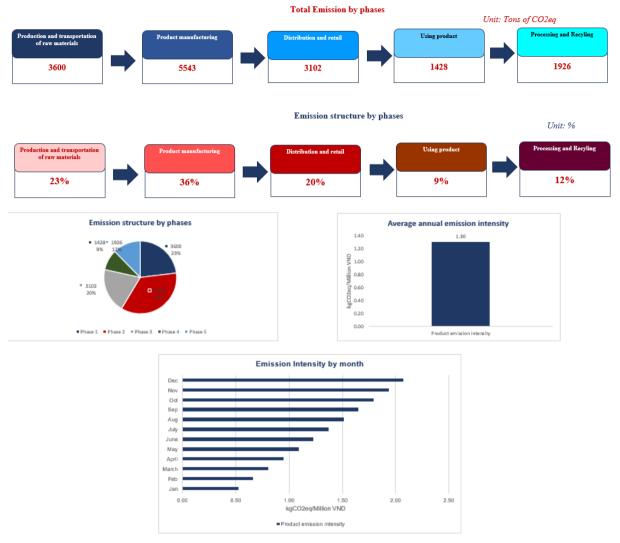
Company name:	0
Sector:	0
Address:	0
Phone number:	0
Email:	0
Year:	0

B. Carbon footprint calculation results

Prod	uct name	Yarns												
						P	roduct outp	ut/revenue						
Product	Unit	Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Total
Yarns	Million VND	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	12000


EMISSIONS OF PRODUCT LIFE CYCLE PHASES

			LIVIISSIC	INS OF PR	ODUCII	TL CICI	LE PHASE							
												L	nit: tons C	O2teq
Stages in the prod	uct emissions life cycle	Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Total
Phase 1	Production and transportation of													
Phase 1	raw materials	80	120	160	200	240	280	320	360	400	440	480	520	3600
Phase 2	Product manufacturing	123	185	246	308	370	431	493	554	616	677	739	801	5543
Phase 3	Distribution and retail	123	148	172	197	222	246	271	295	320	345	369	394	3102
Phase 4	Using product	86	92	98	104	110	116	122	128	134	140	146	152	1428
Phase 5	Processing and Recyling	111	120	129	138	147	156	165	174	183	192	201	210	1926
Total (I	ons CO2eq)	523	664	806	947	1088	1229	1370	1512	1653	1794	1935	2076	15598


EMISSIONS STRUCTURE BY PRODUCT LIFE CYCLE PHASES

													Unit: %	ó
Stages in the p	roduct emissions life cycle	Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Total
Phase 1	Production and transportation of													
Phase 1	raw materials	15%	18%	20%	21%	22%	23%	23%	24%	24%	25%	25%	25%	23%
Phase 2	Product manufacturing	24%	28%	31%	33%	34%	35%	36%	37%	37%	38%	38%	39%	36%
Phase 3	Distribution and retail	24%	22%	21%	21%	20%	20%	20%	20%	19%	19%	19%	19%	20%
Phase 4	Using product	16%	14%	12%	11%	10%	9%	9%	8%	8%	8%	8%	7%	9%
Phase 5	Processing and Recyling	21%	18%	16%	15%	14%	13%	12%	12%	11%	11%	10%	10%	12%
Tota	l (Tons CO2eq)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

						EMIS	SIONS IN	TENSITY					
kgCO2eq/Million VND	Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Average annual emission intensity
Product emission intensity	0.52	0.66	0.81	0.95	1.09	1.23	1.37	1.51	1.65	1.79	1.94	2.08	1.30

To export the results as PDF, the user can click on "Export results".